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bstract

ow energy ion irradiation was used to investigate the microstructural modifications induced in Ti3SiC2 by nuclear collisions. Characterization
f the microstructure of the pristine sample by electron back-scatter diffraction (EBSD) shows a strong texturing of TiSi2, which is a common
econdary phase present in Ti3SiC2. A methodology based on atomic force microscopy (AFM) was developed to measure the volume swelling
nduced by ion irradiation, and it was validated on irradiated silicon carbide. The swelling of Ti3SiC2 was estimated to 2.2 ± 0.8% for an irradiation

ose of 4.3 dpa at room temperature. Results obtained by both EBSD and AFM analyses showed that nuclear collisions induce an anisotropic
welling in Ti3SiC2.

2011 Elsevier Ltd. All rights reserved.
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. Introduction

The Gas-cooled Fast Reactor (GFR) is one of the six new
ystems studied in the framework of the Generation IV Inter-
ational Forum (GIF). These systems are characterized by an
ncreased security level, a better economic competitiveness, and
he ability to recycle all the fuel in order to upgrade it to a fis-
ionable material and to minimize long-lived waste production
y transmutation.1 The GFR is designed to work under helium-
ressure and at high-temperature (1100–1300 K). Due to these
orking conditions, non-oxide refractory ceramics are required
s fuel cladding. Thus, carbides turn out to be excellent candi-
ates due to their remarkable mechanical and thermal properties.
owever, their behavior under irradiation has to be investigated.
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Among potential carbides, ternary Ti3SiC2 presents some
nteresting properties. In 1972 Nickl et al.2 remarked that this

aterial is abnormally soft for a carbide, so that its hardness
ecreases as the applied load increases. For this reason Goto and
irai3 qualified Ti3SiC2 as a “ductile ceramic”. Furthermore,
i3SiC2 combines the properties of metals with those usually
ttributed to ceramics.4–7 Thus, this material is not only soft but
lso stiff and tough, it behaves as a good electrical and thermal
onductor, and it can be easily machined with the tools generally
sed for steels.

The interesting mechanical properties of Ti3SiC2 suggest
hat this compound could be used as fuel cladding material. Its
amage tolerance to mechanical stresses might indicate a high
esistance to irradiation. Nevertheless, apart from few recently

ublished articles related to Ti3SiC2,8–10 and Ti3(Si,Al)C2,11–14

ew information is available about its behavior under irradiation.
Previously,15,16 we showed that an irradiation performed at

oom temperature with 4 MeV Au ions to a fluence of 1019 m−2

dx.doi.org/10.1016/j.jeurceramsoc.2011.01.002
mailto:jc.nappe@yahoo.fr
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Table 1
Irradiation conditions.
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Table 2
Wyckoff positions of the atoms for the three phases present in the studied
material.

Phase Ti3SiC2 TiC TiSi2

Space group P63/mmc(194) Fm-3m(225) Fddd(70)
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emperature Room temperature 773 K 1223 K
luence (m−2) 1016, 1017, 1018, 1019 1016, 1017, 1018, 1019 1019

nduces both an erosion of the Ti3SiC2 grain boundaries, as
bserved by scanning electron microscopy, and a revealing of
he grain structure, as evidenced by atomic force microscopy.

e attributed the former phenomenon to a preferential sputtering
ue to lower threshold displacement energy of the atoms located
n grain boundaries. For the latter result, we were led to consider
he occurrence of preferential sputtering as a function of the
rystallite orientation. In this work, complementary irradiation
xperiments suggest another explanation.

. Experimental

The polycrystalline samples were provided by the 3-ONE-
company (Vorhees, NJ, USA). They consist of about 74%

i3SiC2, 19% TiC0.92, and 7% TiSi2 (as estimated by X-ray
iffraction). As-received samples were polished with diamond
aste of a size down to 1 �m.

The interactions occurring in reactors are essentially elas-
ic (or nuclear) collisions due to primary knock-on atoms from
eutrons, and recoil atoms arising from alpha-decays. In order
o simulate these interactions, low energy ion irradiations are
sually performed. Thus, the polished face of the samples
as irradiated with 4 MeV Au ions provided by the ARAMIS

ccelerator (CSNSM-Orsay, France). Table 1 summarizes the
rradiation conditions.

In order to compare the results of these irradiations with previ-
us data (especially those using neutron irradiations), it is usual
o deal with the number of displacements per atoms (dpa) of
he target, induced by the irradiation as a function of the depth
ithin the irradiated material. The fluence scale has been con-

erted into a dpa scale on the basis of TRIM-2008 calculations,17

y considering the number of vacancies produced with 4 MeV
u ions as a function of depth in Ti3SiC2. The displacement

nergies were: 25 eV for Ti, 15 eV for Si, and 28 eV for C. Fig. 1

ig. 1. Depth distribution of implanted ions and number of displacements per
tom (per fluence unit) for Ti3SiC2 irradiated with 4 MeV Au ions.
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toms TiI TiII Si C Ti C Ti Si
yckoff positions 2a 4f 2b 4f 4a 4b 8a 16e

hows the variation of the damage level (in dpa per fluence unit)
nd of the ion distribution (also estimated with the TRIM code)
s a function of the depth in the target material. This figure
hows that the damaged thickness may be estimated to 760 nm.
n this layer, irradiation induces an average dpa per fluence unit
f 4.3 × 10−19 m2, viz. 4.3 dpa for an irradiation to 1019 m−2.

Different techniques were used to characterize the sur-
ace modifications induced by ion irradiation. Atomic force
icroscopy (AFM) aims both to analyse the surface topogra-

hy modifications and to measure the swelling. Field emission
un scanning electron microscopy (FEG-SEM) was used to
nderline differences between Ti3SiC2 and the other phases
y imaging the surface of samples with back-scattered elec-
rons. Coupled to FEG-SEM, electron back-scatter diffraction
EBSD) was used to characterize the crystallites before irra-
iation. EBSD is a powerful technique for the quantification
f both the microtexture and the microstructure of polyphased
rystalline materials.

For EBSD, as-received samples were also polished with dia-
ond suspensions down to 1 �m. Then, they were polished with
�m colloidal silica suspension for 3 h. EBSD analyses were

arried out using an HKL Technology (now Oxford Instruments)
ystem installed on a Zeiss Supra 55 VP FEG-SEM operating at
7–20 kV and a probe-current of about 20 nA. EBSD analyses
ere not possible on irradiated samples because of the loss of

rystallinity induced by nuclear collisions.8,15

Crystal structure data were created using the Twist add-on
ith the data shown in Table 2. In this table, TiI atoms correspond

o the atoms of the basal planes linking the CTi6 octahedrons,
nd TiII atoms to those bordering the silicon basal planes. Repre-
entations of the Ti3SiC2 lattice can be found elsewhere.4–6 The
omplexity of the Ti3SiC2 diffraction patterns leads to the failure
f the automatic indexation algorithm for some particular orien-
ations. More precisely, the band recognition process using the
tandard Hough transform fails when Kikuchi bands are closely
paced and nearly parallel, which is the case of the Ti3SiC2
iffraction pattern. Nevertheless, the number of non-indexed
atterns is relatively small, leading to a reliable microstructure
nalysis.

. Results and discussion

.1. Characterization of pristine samples
The characterization of as-prepared (or pristine) samples
as partly reported previously.15,16 Briefly, we first noticed a
ifference in the contrast between the three phases using back-
cattered electrons in the FEG-SEM. Then, by AFM we were
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ig. 2. Microstructure of a pristine sample observed by EBSD; (a) micrograph
n band contrast, (b) phase distribution: Ti3SiC2 in blue, TiC in red, and TiSi2
n yellow.

ble to distinguish TiC from the other phases due to its big-
er hardness: TiC grain surfaces appear elevated above those of
ther phases.

In order to confirm that the microstructure revealed after irra-
iation at room temperature to 1019 m−215,16 depends on the
rystallite orientation, EBSD was performed on unirradiated
amples. Fig. 2 shows the microstructure of pristine samples as
evealed by EBSD. Fig. 2a corresponds to the diffraction pattern
uality quantified by the “band contrast”, while Fig. 2b presents
he phase distribution (with Ti3SiC2 in blue, TiC in red and TiSi2
n yellow). These mappings show distinct morphologies for the
ifferent phases: Ti3SiC2 appears as strongly faceted and elon-
ated crystallites, while TiC exhibits more equiaxed shapes. The
inor TiSi2 phase appears as small isolated islands, which are

referentially located near other phase grain corners.
The crystallographic orientations of the different phases are

hown in Fig. 3. The color code corresponds to the crystallo-
raphic direction parallel to the normal direction as shown in
he standard inverse pole figure for each phase. Crystallographic
nformation can be obtained from these mappings. First, by a
areful examination of the individual orientations of Ti3SiC2, it

an be shown that the morphology of the crystallites perfectly
atches the hexagonal symmetry of the crystal: the elongated

nd faceted crystallites (mostly green and blue in Fig. 3a) have
c-axis perpendicular to the long straight edges. Other crystal-

e
o
i
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ites appearing in orange or red have a c-axis perpendicular to
he map section and the faceted edges are perpendicular to the
-axis. From this observation, it can be concluded that this phase
orms hexagonal platelets. While the most abundant phases do
ot have a preferential crystallographic orientation, the minor
iSi2 islands appear in the same color: this result indicates that

his phase is strongly textured. This is confirmed by the pole fig-
res of the 〈1 0 0〉 directions shown in Fig. 4. Other areas of the
ame sample have been analyzed in order to investigate this par-
icular point. The images confirm that TiSi2 is strongly textured
t a local scale.

To our knowledge, such a preferential orientation of TiSi2 has
ever been reported in the literature. Since this phenomenon was
ot observed by low-incidence X-ray diffraction,15 we believe
hat it is localized. Unfortunately, no explanation has yet been
rovided to explain such a texturing. However, two reasons may
e invoked:

(i) During the synthesis of Ti3SiC2 a liquid eutectic Si–TiSi2
could have formed at 1330 ◦C18–20; Audubert et al.21 have
shown that this liquid phase was also formed in the sintered
product.

ii) The TiSi2 phase melts at 1540 ◦C,22 so that as indicated by
Morgiel et al.23 it seems to wet the other grains, filling up
the free spaces.

o information is available about the sintering temperature
f the studied material. However, since the sintering temper-
ture of the Ti3SiC2 powder generally ranges between 1400
nd 1700 ◦C,7,24 temperatures of 1330 and 1540 ◦C were prob-
bly reached during the fabrication of these samples. This
eature could explain the observed preferential orientation by
liquid–solid transition.

Fig. 5 shows an example of the microstructure revealing phe-
omenon previously observed in a sample irradiated at room
emperature with 4 MeV Au ions to 1019 m−216. Characterizing
oth the shape and the size of the revealed grains by AFM, we
howed that theses grains are the same as the crystallites that
ay be observed by EBSD in pristine sample. This confirms

hat the revealing of the microstructure induced by irradiation is
ependent on the crystallite orientation.

.2. Swelling measurements

To measure the swelling induced by irradiation, some sam-
les were partly irradiated by placing a protective aluminum
ask on part of these samples to protect them from the ion

eam. Fig. 6a shows a micrograph, obtained by AFM, of the
nterface between the virgin and the irradiated areas for an irra-
iation at room temperature to 1019 m−2. The lighter shade of
he irradiated area suggests that its height is higher than before
rradiation, and therefore that irradiation has induced a swelling
f the material.
Measuring the sections of partly irradiated grains on sev-
ral micrographs (see Fig. 6b), we estimated an average step
f 16.8 ± 6.3 nm between the virgin and irradiated areas for the
rradiation at room temperature to 1019 m−2 (the large height
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Fig. 3. Mapping of the crystallographic or

ifference between the two sections of Fig. 6b will be dis-
ussed later on). Since the swelling due to ion irradiation induces

change of the sample dimensions only along the ion beam

irection,25–27 the measured linear swelling provides an esti-
ation of the volume swelling. To evaluate the linear swelling,

ther authors compare the step induced by the irradiation either

t
(
fl
i

ion of (a) Ti3SiC2, (b) TiC, and (c) TiSi2.

ith the projected range28 or with the damaged thickness29 (see
ig. 1). For a fluence of 1019 m−2, the highest fluence used in
his work, the implanted-ion concentration is not large enough
∼160 ppm) to induce a significant swelling.30 Since for lower
uences the concentration of implanted ions is less important,

t appears that the projected range is not a good parameter to
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ng texturing of this phase on the map presented in Fig. 3c.
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Fig. 4. 〈1 0 0〉 pole figures for TiSi2 showing the stro

valuate the volume swelling in this study. However, the obser-
ations of cross sections by transmission electron microscopy
nd the evaluation of lattice parameters by X-ray diffraction
ave highlighted that nuclear collisions induce both the forma-
ion of defects in Ti3SiC2

8,11 and an increase of its unit cell
olume.8,12 These two phenomena provide an explanation of
he swelling observed in other irradiated ceramics.27,31–33 Thus,
e decided to compare the measured step with the damaged

hickness (Fig. 1) to estimate the volume swelling. The results
how that Ti3SiC2 swells by 2.2 ± 0.8% for an irradiation dose
f 4.3 dpa.

To determine whether such an estimation of the swelling
nduced by ion irradiation is relevant or not, we used the same

ethodology with a polycrystalline �-SiC sample irradiated in
he same conditions as Ti3SiC2 (inducing an average of 3.1 dpa
ver 800 nm). We estimated a swelling of 16.4 ± 1.3% (step of

31 ± 10 nm), which is in agreement with the literature. Actu-
lly, due to its amorphization for doses higher than 0.5 dpa, the
welling of SiC would range between 10 and 20%.29,34 Thus,

ig. 5. Microstructure revealing observed by AFM in a sample irradiated at
oom temperature to 1019 m−2.

Fig. 6. Swelling induced by room temperature irradiation to 1019 m−2: (a) AFM
micrograph of the interface between the irradiated and the virgin areas, and (b)
profiles of the sections indicated in (a).
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Fig. 7. Evolution of the microstructure of irradiated areas as a function

his work shows that our methodology is accurate, and that
i3SiC2 swells less than SiC for irradiations carried out at room

emperature.
It was not possible to obtain micrographs similar to that of

ig. 6 for other irradiation conditions (lower fluence and/or
igher temperature). Actually, the height difference between
irgin and irradiated areas was not sufficient to be observed
y optical microscopy. Therefore, it was not possible to posi-
ion the AFM tip at the interface between virgin and irradiated
reas. Nevertheless, observations of the irradiated areas were
arried out for other irradiation conditions. Fig. 7 presents typ-
cal microstructures of irradiated samples as a function of both
he fluence (or number of dpa) and temperature. The dark areas
n the micrograph recorded on a sample irradiated at room tem-
erature to 1017 m−2 are due to porosity. This porosity was also

isible before irradiation for this sample. They are certainly due
o the pull out of surface grains during the sample preparation. In
his figure, one can also see that the revealing of microstructure
ppears at room temperature between 1017 and 1018 m−2. When

e
r
e

th the temperature and the fluence; RT stands for “room temperature”.

he irradiation temperature is raised to 773 K, it appears between
018 and 1019 m−2. Eventually, no microstructure revealing is
oticeable at 1223 K for a fluence of 1019 m−2. Therefore, the
ormation of this microstructure is enhanced when the fluence
s increased, or when the temperature is decreased.

.3. Origin of the microstructure revealing

In a previous paper, we attributed the modification of the
icrostructure induced by irradiation to an effect of sputtering.15

owever, the sputtering yield does not depend on the irradiation
emperature, whereas the present results have shown that the

icrostructure revealing does depend on it. Therefore, invoking
puttering as a possible cause for the microstructure revealing
as a misinterpretation of previous data.

The swelling measurements suggest a new and more relevant

xplanation of this phenomenon. Actually, upon irradiation at
oom temperature to 1019 m−2, Ti3SiC2 slightly swells. How-
ver, Fig. 6 indicates that this swelling is not the same for
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ig. 8. Back-scattered electron micrograph of the microcrack formation on a
ample irradiated at room temperature to 1019 m−2.

ll crystallites, inducing a large difference between the mea-
ured heights. So, it is likely that anisotropic swelling occurs,
wing to the hexagonal close-packed structure of Ti3SiC2. Such
n anisotropic swelling has already been observed in other
aterials presenting anisotropic structures.31,35,36 Moreover, it

as been shown that anisotropic swelling leads to the occur-
ence of significant stresses in the irradiated area, inducing
ractures or microcracks at grain boundaries in polycrystalline
aterials.31,36 Therefore, the anisotropic swelling would also

xplain what we previously thought to be an erosion phe-
omenon of the Ti3SiC2 grain boundaries15: as shown in Fig. 8,
icrocracks formed in the grain boundaries of Ti3SiC2 irradi-

ted at room temperature to 1019 m−2.
In this work, where other irradiation conditions were

xplored, microcrack formation was not observed in other sam-
les. This result confirms the hypothesis that both the formation
f microcracks and the microstructure revealing are due to
nisotropic swelling of Ti3SiC2, and that, in the conditions inves-
igated, the swelling of Ti3SiC2 decreases with decreasing ion
uence and/or with increasing irradiation temperature.

.4. Ti3SiC2 swelling model

Several authors have discriminated different regimes of
welling in ceramics, which depend on the irradiation
emperature.31,32 At low temperatures, irradiation creates point
efects or defect clusters, which lead to the amorphization of
he material at high fluence. Defect creation induces a swelling,
hich increases with increasing fluence, and saturates when
morphization is completed (“amorphization regime”). Above
he “critical amorphization temperature Tc”, temperature at
hich the damage recovery rate is equal to the damage rate,

morphization of the material does not occur, even at very high

w
a
o
s
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uences. The value of Tc varies as a function of the nature of
he material: for instance, 200 K for graphite,37 200–250 K for
l2O3,27 400–650 K for SiC.38,39 Thus, above Tc, the swelling

ncreases with increasing fluence up to saturation, but it is only
ue to defect creation (“saturatable regime”). As the material
oes not become amorphous, the saturation swelling is much
maller than that measured in the amorphization regime, and it
teadily decreases with increasing temperature. This decrease is
enerally attributed to the recombination of Frenkel pairs created
n the collision cascades, which is enhanced at high temperature.
ventually, for temperatures high enough to allow vacancies to
e significantly mobile, vacancy clusters can form and grow in
avities (or voids). In this “non-saturatable regime”, extended
efects are the major cause of swelling, which becomes flu-
nce dependent, and increases with increasing temperature. If
i3SiC2 follows this model of swelling, it should be in the sat-
ratable regime, whatever the irradiation temperature is. This
ssumption stems from the following statements:

(i) Nuclear collisions create defects in Ti3SiC2 without lead-
ing to amorphization,11,12,15 even for the highest studied
dose (4.3 dpa), whereas SiC, which is in the amorphization
regime at room temperature, becomes amorphous above
0.5 dpa. This suggests that Ti3SiC2 is not in the amorphiza-
tion swelling regime.

(ii) No extended defects have been observed by transmission
electron microscopy analyses,8 even for the highest tem-
perature (1223 K), suggesting that Ti3SiC2 is not in the
non-saturatable regime;

iii) The swelling decreases and increases respectively with the
temperature and the dose (see Section 3.2.). This behavior
is typical of the saturatable regime.

Therefore, the critical amorphization temperature of Ti3SiC2
ould certainly be lower than room temperature, and the transi-

ion temperature between the saturatable and the non-saturatable
egimes would be higher than 1223 K.

However, as Ti3SiC2 possesses some properties generally
ttributed to metals, and has also a behavior under electronic
xcitations similar to that of metals,8 it could follow another
odel. According to the literature, metals do not seem to become

morphous for very high dose,40,41 in the temperature range
tudied in this work. Moreover, the swelling of metals does
ot saturate, but increases linearly with the dose due to the
gglomeration of point defects into extended defects, whatever
he irradiation temperature. Eventually, a temperature increase
sually induces an increase of the swelling up to a maximum
or a critical temperature above which the swelling decreases.42

hus, considering that such a critical temperature is ever reached
or irradiations at room temperature, the results presented in this

ork also match with this model, and complementary irradi-

tions, such as irradiations at lower and higher temperatures,
r creating more damage, are needed to better understand the
welling behavior of Ti3SiC2.
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. Conclusion

The first aim of this study was to confirm that the
icrostructure revealing, observed on Ti3SiC2 irradiated at

oom temperature with 4 MeV Au ions to 1019 m−2, depends
n the crystallite orientation. This result was confirmed by com-
ining AFM and EBSD observations that show similarities in the
hape and size of both the revealed grains and the crystallites of
he samples. Moreover, EBSD analyses allowed the highlighting
hitherto unexpected result: the secondary phase TiSi2, present

n the studied specimen, is highly textured. We conjecture that
he formation of a liquid phase during the sample preparation
ould be the cause of this strong texturing.

The second goal of this work was to develop a methodology
o estimate by AFM the volume swelling induced by ion irradi-
tion. The method was validated with measurements performed
n an irradiated SiC sample that match the result found in the
iterature. Using this method, we showed that Ti3SiC2 weakly
wells at room temperature (2.2 ± 0.8%) for an average irradi-
tion dose of 4.3 dpa, whereas the swelling of SiC irradiated in
he same conditions reaches 16.4%. Furthermore, we showed
hat, in the temperature and damage range of our study, the
igher the temperature or the lower the amount of damage, the
ower the swelling of Ti3SiC2. However, complementary irradi-
tions are needed to determine the swelling model applicable to
i3SiC2, which can be either that implemented for ceramics or

hat implemented for metals.
Finally, by comparing the micrographs obtained by using

oth AFM and FEG-SEM, we showed that the microstructure
evealing induced by irradiation is due to an anisotropic swelling
f Ti3SiC2. Nevertheless, since neither microstructure revealing,
or crack formation has been observed on the sample irradiated
t 1223 K to 1019 m−2, we can conclude that, from the swelling
oint of view, Ti3SiC2 seems to present interesting prospects for
se as a clad component of GFR.
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